High resolution, two-dimensional image mapping of ZnO nanowires by confocal microphotoluminescence and microraman spectroscopy.
نویسندگان
چکیده
High-quality ZnO nanowires were synthesized using both Au catalysts and ZnO seeds by chemical vapor depositionon basal plane sapphire substrates. The nanowires were hexagonal and aligned with their c-axis closely perpendicular to the sapphire substrate surface. The structural characteristics of the nanowiresgrown using the different catalysts/seeds were compared using scanning electron microscopyand X-ray diffraction. Their optical properties were assessed using microphoto-luminescence and confocal microRaman spectroscopy and compared. The nanowires exhibited a strong near band-edge related UV luminescence emission along with a defect related visible emission. The dependence of the luminescence as a function of incident excitation power and depth along the axis of the nanowires was studied. The wurtzite structure of the ZnO was confirmed from the Raman measurements. Two-dimensional mappings of the microphotoluminescence emission at different wavelengths and microRaman scattering from the nanowire samples were carried out using a confocal laser scanning microscope. This enabled the ability to correlate the near band-edge UV and visible emissions over the mapped area.
منابع مشابه
Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy.
We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing >10 microm were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution...
متن کاملGrowth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short-Circuit Diffusion Analysis
Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamina...
متن کاملStructural and Optical Properties of ZnO Nanowires Doped with Magnesium
ZnO nanowires doped with Mg have been successfully prepared on Au-coated Si (111) substrates using chemical vapor deposition method with a mixture of ZnO, Mg, and activated carbon powders as reactants at 850 ◦C. The structural, compositional, morphological and optical properties of the samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscop...
متن کاملThe Influence of Short-Range Correlation on the Phonon Confinement of a Single ZnO Nanowire
Plenty of researches have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since to analyze the optical confinement and their correlation lengths along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid ...
متن کاملA Novel Way for Synthesizing Phosphorus-Doped Zno Nanowires
We developed a novel approach to synthesize phosphorus (P)-doped ZnO nanowires by directly decomposing zinc phosphate powder. The samples were demonstrated to be P-doped ZnO nanowires by using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction spectra, X-ray photoelectron spectroscopy, energy dispersive spectrum, Raman spectra and photoluminescence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nanoscience and nanotechnology
دوره 11 7 شماره
صفحات -
تاریخ انتشار 2011